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Improvements in drug design have historically been centered around structure-based optimization of mole-
cule specificity for a targeted protein, in an effort to reduce unintentional binding to other proteins and off-
target effects. Although the ‘‘one-to-one’’ drug design strategy has been successful in impairing function
of targets associated with a number of diseases, recent reports of drug promiscuity, which are a potential
source of adverse reactions in patients, make a case to refine the drug design strategy such that it includes
an awareness of multiple interactions from both ligand and protein perspectives. Polypharmacology and
chemical biology studies are amassing interaction data at rapid rates, and the integration of such data into
an interpretable model requires zooming our perspective out from the single ligand-target level to the larger
network-wide level. We review some of the recent developments in systems-level research for drug design
and discovery, and discuss the directions that some drug design efforts are heading toward.
Single-Target Drug Design and Side Effects
The information obtained from analysis of protein three-dimen-

sional structure often kick-starts the modern drug design

process, providing information for designing small molecules

that are complementary to the shape of an investigated protein.

Thus, the basic idea here is to take advantage of complemen-

tarity built into designed small molecules to inactivate the protein

function and stop downstream cellular processes. Subsequent

design revisions are typically aimed at optimizing the binding,

reducing molecular weight, or increasing lipophilicity, which all

improve the molecule’s drug-like properties. With the assistance

of computational techniques, a number of drugs have been

refined with this mindset, and a number of reviews have dis-

cussed the impact made by computational drug design

(Schneider and Fechner, 2005; Jacoby, 2011).

Although an appreciable number of drugs have been designed

with a particular protein as the target, and although the desired

effects of drugs are observable in a statistically significant

manner during early in vitro and in vivo development stages,

unexpected side effects continue to be a problem. This is

frequently a contributor to failure in clinical trials, where the

drug that showed success in vitro fails to work as intended

when placed in a more complex in vivo environment. The fact

that drug side effects exist indicates that there is something in

the underlying assumptions about drug design that needs to

be questioned and refined. Immediately, several questions

come to mind. Even though a drug has been designed to target

a single protein, it is important to question whether such a design

is truly optimal for inhibiting a disease processwhich involves the

orchestration of multiple receptors and proteins passing signals

to each other. Additionally, is the assumption of a simple linear

signaling cascade from ligand binding to the effect a valid

one? Finally, is the designed drug molecule truly binding to

only the intended protein?

In recent drug design, we have adjusted our mindset from the

traditional one-protein-one-ligand model to incorporate the view
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that the underlying response mechanisms activated by the

ligand stimulation are a network of processes, and that it is this

network or systems biology level of understanding that needs

to be considered for advancing our knowledge of the conse-

quences of single-target drug design, including side effects.

Much like the Internet that is a dynamic, multiple connection net-

work system to transmit information, we believe the next gen-

eration of molecule design will need to consider a more dynamic,

multipathway system that a drug can take to exert an effect.

Here, we will introduce ligand multi-targeting properties and

how the properties can be used to develop a different kind of

small molecule effectors that intentionally interact at the network

level rather than at the single target level. We will illustrate our

ideas with recent examples that highlight the issue and provide

potential solutions, by drawing from both computational and

chemical biology efforts.

Multiple Interactions between Ligands
and Target Proteins
As mentioned, thus far drug design strategies by and large

employed the one-protein-one-ligand model. However, in the

past decade, the emergence of chemical biology is increasingly

influencing the directions that drug design proceeds in, because

it provides a platform for improving our understanding of how

small molecules impact the underlying functional frameworks

that connect intracellular macromolecules (Schreiber, 2005).

Chemical biology approaches are being applied in a wide variety

of research model organisms including yeast (Hübel, 2009),

chickens (Yamamoto et al., 2011), and mice (Chen et al.,

2011). In addition to chemical biology, polypharmacology

(MacDonald et al., 2006) has also gained attention in recent

years as efforts to understand biological network signaling

cascades that are perturbed by drug stimulation have increased.

Such studies demonstrate the ‘‘many-to-many’’ nature of

compound-protein interactions, as opposed to the traditional

‘‘one-to-one’’ model, and it is believed that drug side effects
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partially result from unintentional binding. The reasons for these

unexpected reactions are complex; molecular shape and prop-

erties, proteins’ allosteric behavior, pathway perturbation, and

pharmaco-kinetics/dynamics are all influential.

First, we need to consider the extent to which a target protein

will bind to a wide variety of ligands. Hopkins (2007) performed

a large-scale systematic study of polypharmacology from

a protein perspective, finding that many G protein-coupled

receptors (GPCRs) were able to bind a large number of ligands.

In addition to GPCRs such as histamine H2 and the a2B adren-

ergic receptor, three types of cytochrome P450 enzymes and

protein kinase C-delta, among many other proteins, have also

been reported to bind to over 100 ligands at an activity threshold

of 10 mM (Paolini et al., 2006).We briefly evaluated target promis-

cuity by investigating ligand specificity of proteins found in the

ChEMBL SARfari databases (http://www.ebi.ac.uk/chembl),

identifying the targets in which at least 100 ligandswere reported

with exact nanomolar inhibitory values (GPCRs: Ki; kinases:

IC50). The numbers of proteins matching this criterion were 129

for GPCRs and 90 for kinases. This calculation is an underesti-

mate of target promiscuity, as we excluded ligands with inexact

nM or uM inhibitory values and set a rather high threshold for the

number of protein ligands, which resulted in excluding a number

of less promiscuous yet still functionally important proteins

such as GPCRs EDG 1/2/3/4/7 involved in endothelial differenti-

ation and CCR 1/2/4/5/8 chemokine receptors, and apoptosis

pathway kinases DAPK 1/2/3 and DYRK 1A/2/3.

One should also consider the extent to which drug molecules

designed for a particular protein are actually promiscuous and

bind to many proteins. In previous research, we developed

the GPCR-ligand database (GLIDA) (Okuno et al., 2008), a

GPCR-specific resource that has cataloged GPCR-ligand inter-

actions, containing visualization maps that both demonstrate

polypharmacology and allow one to rapidly identify promiscuous

compounds such as clozapine, an example of a well-known

antipsychotic drug that is considered ‘‘effectively promiscuous’’

(Hopkins et al., 2006). Using ChEMBL, we scanned both GPCR

and kinase interaction data to get a first-hand glimpse into

small molecule and ligand promiscuity. Based on the proteins

from the above analysis, we found that 19,528 of 33,237 ligands

(59%) in the kinase database have exact nanomolar inhibitory

values. When we eliminated those ligands that were bound

to only a single target, there were still 6,942 promiscuous mole-

cules (36%) left. For ChEMBL’s GPCR database, 35,090 of

118,013 (30%) molecules bind to the reduced set of multi-ligand

receptors. Even after filtration of single-target ligands, the set of

GPCR ligands still contained 18,564 (53%) promiscuous, multi-

target molecules. These values should be considered as an

underestimate of the situation as the search conditions were

highly constrained.

Thus, the databases accumulating chemical biology data

reveal a more realistic view of many-to-many interactions be-

tween proteins and ligands, suggesting that consideration of

multiple interactions could be a key to improving drug design

strategies.

Widening the Vision of Scope to the Network Level
These target and ligand promiscuities can be regarded as a

very reasonable mechanism for subtle control of complicated
24 Chemistry & Biology 19, January 27, 2012 ª2012 Elsevier Ltd All r
biological systems because the existence of multiple combina-

tions of the limited number of endogenous ligands and target

proteins is a potential reason for explaining the diversity of input

patterns into the downstream signaling pathways, suggesting

that understanding and controlling of the promiscuities is a

critical issue for drug design. Up to the present, ligand promis-

cuity has not been the explicit intent of drug design. Hence,

the idea of polypharmacology suggests that principles that

govern drug design should be reconsidered, and that drug

design should be undertaken with a broader perspective.

Another way of thinking about the opportunity presented by

evidence of polypharmacology is that we should attempt to

design ‘‘network-oriented’’ drugs. Considering entire networks,

even social or logistical, allows one to derive a ‘‘context’’ for

a subset of the network, where the context is often derived

dynamically from the neighboring nodes. For network-oriented

drugs, the context is the signaling network with multiple entry

points, a design philosophy in sharp contrast to the ‘‘network-

less’’ (single molecular target) designs that are intuitive when

limited to a one-to-one local scope. Similar arguments, ques-

tioning whether the use of the reductionist approach typically

applied in chemistry and physics is appropriate for drug design,

given that reduction to network pieces does not provide direc-

tions for network reassembly, were made recently (Maggiora,

2011).

Once we accept that drug design needs to incorporate

a ‘‘many-to-many’’ network approach, the next issue to solve

is how to create and validate such a ligand-protein network.

Next, we discuss several related computational drug discovery

methods, including a network-oriented approach with experi-

mental validation.

A New Drug Design Approach Based on Machine
Learning of Network-Wide Interaction Space between
Chemistry and Biology
GPCRs are involved in vision, smell, immune system activity, and

many other high-level physiological functions. Binding of extra-

cellular ligands to GPCRs affects cellular internal downstream

signaling, which has a crucial impact on the function of an

organism. The downstream signal processes are complex

nonlinear relationships, reaffirming our need to shift the ligand

designmindset from one-to-one to a larger network perspective.

Although at least 300 GPCRs are of therapeutic interest, drugs

currently available on the market target <10% of them (Okuno

et al., 2008) and much of the GPCR-ligand interaction space

remains to be explored. Using the 39,000 interactions available

in GLIDA for exploration of new regions in GPCR interaction

space not only uncovers new polypharmacological interactions

that could be contributing to drug side effects, but equally

important, represents the potential for identification of starting

points to develop new drugs with alternative scaffolds and

binding modes.

In a recent report (Yabuuchi et al., 2011), we proposed a drug

design concept, ‘‘Chemical Genomics-Based Drug Design’’

(CGBDD) for incorporating system-level multi-interaction

networks connecting chemistry and biology. To better under-

stand GPCRs from a systems perspective, we implemented a

new method for the computational prediction of novel GPCR-

ligand interactions, so called polypharmacological interactions.
ights reserved
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Figure 1. Complexity of Interaction Networks
Using known GPCR-ligand interactions, chemical genomics-based virtual screening was applied to discover novel interactions. When a GPCR-ligand interaction
is predicted at a bioactivity of 10 uM, a line between the GPCR and ligand is drawn in the interaction network. The resulting network, including known interactions,
demonstrates the complexity of interactions between chemical and biological spaces, and reinforces the need to shift the drug design strategy from ‘‘one-ligand-
one-protein’’ to ‘‘many-to-many.’’ The node color indicates the classes that compounds and GPCRs belong to (blue, amines; red, peptides; yellow, prostanoids;
green, nucleotides). The links colored from green to yellow to red indicate increasing confidence in the GPCR-ligand interaction, with a number of interclass
GPCR-ligand interactions exhibiting high predictive confidence.
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Generalizing beyond GPCRs, our overall goal was to create a

technique that leverages an interaction database for construc-

tion of amodel that accurately and compactly expresses interac-

tion patterns, such that the model has sufficient predictive

performance in translational testing. Although the idea of multi-

interaction data mining has been explored by several other

groups (Jacob and Vert, 2008; Wassermann et al., 2009), only

a very limited number of computational results have actually

been tested in experimental assays.

Although massive HTS studies are now possible, it is impor-

tant that drug discovery costs do not inflate simply because it

is easy to perform all possible assays. Thus, virtual screening

(VS) will become essential for efficiently reducing the number

of possible chemical candidates and bioactivities to assay.

However, the existing widely-used VS approaches are based

only on a one-to-one mindset, such as structure-based VS

(SBVS) and ligand-based VS (LBVS) methods. The CGBDD is

a drug design concept for leveragingmultiple compound-protein

interaction networks (Figure 1), and has been implemented to

develop a virtual screening method, called CGBVS (Yabuuchi

et al., 2011). The CGBVS approach requires less computational

time and complexity than existing SBVS methods, and over-
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comes problems encountered when performing LBVS for

orphaned receptors. Its goal is to efficiently mine the broad,

global chemical data space before using SBVS or LBVS with

a reduced number of drug scaffolds.

As mentioned at the beginning, recent in silico development of

drug leads and pharmaceuticals is being aided by the use of

computational techniques, and in the CGBVS approach we

employ machine learning, an active research field that develops

computational algorithms to extract statistically meaningful

information from large data sets. For those unfamiliar with

machine learning, it is easy to think of how a human child learns

to distinguish colors or shapes, after which they can cluster

new, unseen objects of ‘‘similar’’ color or shape together.

Thus, machine learning is a critical tool for the extraction and

representation of patterns existing in protein-ligand interactions

that can then be subsequently applied to drug lead discovery

and optimization.

Below, we briefly describe the CGBVS interaction prediction

procedure (Figure 2). For proteins in known and hypothetical

query interaction pairs, an analysis technique counting the

frequency of all dipeptide sub-sequences is applied; no struc-

tural information is required. We apply vector representation to
ogy 19, January 27, 2012 ª2012 Elsevier Ltd All rights reserved 25



Figure 2. Roadmap for Systems-Level Drug Design
Similar to the CGBVS method that can utilize protein and ligand promiscuity, the incorporation of multiple interactions (polypharmacology and chemical
biology) will be a key for advancements in drug design. Systems-level awareness of chemical and biological processes and the feedback resulting from
clinical application will provide constraints to guide future generations of molecule design for producing medicines that are more personal and contain fewer side
effects.
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describe a ligand’s chemical structure and physicochemical

properties, such as atom counts, topology patterns, connectivity

frequencies, electrostatic properties, lipophilic character, and

other measurable types of information. For known (non-)interac-

tions, we also create a piece of information (‘‘bind’’, ‘‘non-bind’’)

representing bioactivity at a modifiable threshold of 10 mM. The

various pieces of information are concatenated per interaction

example, and all examples are combined to form the dataset

used for predictive model construction. We tested CGBVS

against pure SBVS and LBVS methods using statistical valida-

tion techniques and obtained improved prediction performance.

This result indicates that this representation of chemical-protein

interactions is effective in identifying frequent patterns in physi-

cochemical properties in order to model complex interactions,

and the machine learning approach provides a way to analyze

the nonlinear interaction data in such a way that different scaf-

folds can still be analyzed and clustered because of their similar

physicochemical characteristics. It provides a new opportunity

to perform reverse design from desired physicochemical char-

acteristics to potential scaffolds, which the medicinal chemist

can then optimize.

Using the full set of interactions in the GLIDA database, we

used the above procedure to derive a model for prediction of

novel GPCR ligands. Using the external Bionet chemical library

(Key Organics Ltd., Cornwall, UK), the top 30 novel b2AR interac-

tions predicted by CGBVS were tested in calcium mobilization

assays. Of those candidates, 9 of 30 compounds had EC50 or

IC50 values in the nM–mM range. With a similar procedure,

cAMP assays confirmed novel interactions in 3 of 20 neuropep-

tide type 1 (NPY1R) candidates that we predicted. Changing the

focus fromGPCRs to kinases, we performed similar experiments

for epidermal growth factor receptor (EGFR) and cyclin-depen-

dent kinase 2 (CDK2), which are being considered as targets
26 Chemistry & Biology 19, January 27, 2012 ª2012 Elsevier Ltd All r
for anticancer therapy. Off-chip mobility shift assays resulted in

novel molecule interaction hit rates of 25% (EGFR, 5/20) and

10% (CDK2, 2/20). These hit rates are improvements relative

to the typical success rates encountered when screening entire

chemical libraries, although even more importantly, many of the

assay hits were compounds with scaffolds different from the

known ligands for each of the targets. All of the interactions

and novel scaffolds uncovered are published (Yabuuchi et al.,

2011). As the same technique was applicable to GPCRs,

kinases, ion channels, and other types of proteins, we anticipate

its concept will be repeatedly applied in the paradigm shift

from one-protein-one-ligand to a more complete, systems-level

multi-interaction network.

A recent related study described a ligand-based approach to

predict ligand-protein binding propensities by using no protein

sequence information but rather only a database of existing

ligands (Keiser et al., 2009). The success of this method

reiterates the importance of the many-to-many drug design

strategy. One major strength of the CGBDD philosophy is

that it can characterize multiple compound-protein interactions

to not only explore biological space and find new targets for

existing drugs (polypharmacology), but also explore chemical

space and find new drugs for existing targets (chemical

biology). Equally important, the CGBVS method has the ability

to discover novel scaffolds in unexplored chemical regions

through effective utilization of existing compound-protein inter-

action patterns, which can link systems biology and systems

chemistry.

Into the Future
A vast amount of bioassay data is now accumulating in data-

bases such as PubChem. The massive screening data could

expand our knowledge regarding chemical-biological interaction
ights reserved



Figure 3. Compound-Prediction Interaction Scheme
The CGBVS ligand-protein interaction discovery method (center) is a change in exploring the interface between chemistry and biology, not requiring the protein
three-dimensional structure required in traditional SBVS (right), nor limited in scope to a single protein as is the case in LBVS (left). In CGBVS, protein sub-
sequences and chemical descriptions of topology and other physicochemical properties are combined for each known interaction and non-interaction. The set of
(non-)interactions is used to build a predictive model that can rank novel ligand-protein interactions for prioritization in bioassay experiments.
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space to a size and complexity we have yet to see. Although the

concept of one-ligand-one-target is simple and easy to under-

stand, it risks narrowing our interpretation of interaction space

to the point where it prohibits us from understanding interaction

space as a whole. In fact, the study with our CGBVS method

successfully uncovered new ligands for multiple protein families

by leveraging existing experimental assays with a representation

appropriate for interaction mining. By incorporating more poly-

pharmacology and chemical biology data, interaction prediction

programs should continue to become more accurate as time

progresses.

The present CGBVS starts with contexts of protein and chem-

ical descriptors (Figure 2). The emerging tools along with the

CGBDD concept will serve as the foundation for a new genera-

tion of drug discovery tools that take extended contexts from

the dual viewpoints of systems biology and systems chemistry

(Figure 3). Systems biology contexts might incorporate pathway

knowledge to model the rules governing a biological network

topology and dynamics. For systems chemistry contexts, we

could utilize building blocks for chemical synthesis as chemical

descriptors, a strategy of fragment-based drug design.
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Furthermore, it is critical to address how to handle side

effects that come about after molecule design, experiment,

optimization, and mass deployment. Efforts to electronically

accumulate drug adverse event reports have begun only in

the past decade. These data might be beneficial in refining

models about polypharmacology and chemical biology.

Although the ability to perfectly coordinate ligation to receptors

and all downstream signaling events in order to eliminate side

effects is a major challenge, inroads are being made to create

a positive feedback loop for driving signal mechanism model

refinement. Standardized pharmacovigilance methods such

as reporting odds ratios (Hauben and Bate, 2010) are now em-

ployed by governments in analyzing the safety of drugs after

they have reached the market, and we also have made sure

that the clinical information is statistically informative (Ka-

doyama et al., 2011). The upcoming integration of heteroge-

neous knowledge of chemical biology, systems chemistry,

polypharmacology, systems biology, and clinical information,

among others, is an exciting and critical advancement for

intensive acceleration of drug discovery and pharmaceutical

development.
ogy 19, January 27, 2012 ª2012 Elsevier Ltd All rights reserved 27
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